
Representation-Independent Program Analysis

Michelle Mills Strout
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439

mstrout@mcs.anl.gov

John Mellor-Crummey
Rice University, Dept. of

Computer Science - MS 132
P.O. Box 1892

Houston, TX 77251-1892
johnmc@cs.rice.edu

Paul Hovland
Argonne National Laboratory

9700 S. Cass Ave.
Argonne, IL 60439

hovland@mcs.anl.gov

ABSTRACT
Program analysis has many applications in software engi-
neering and high-performance computation, such as pro-
gram understanding, debugging, testing, reverse engineer-
ing, and optimization. A ubiquitous compiler infrastruc-
ture does not exist; therefore, program analysis is essen-
tially reimplemented for each compiler infrastructure. The
goal of the OpenAnalysis toolkit is to separate analysis from
the intermediate representation (IR) in a way that allows
the orthogonal development of compiler infrastructures and
program analysis. Separation of analysis from specific IRs
will allow faster development of compiler infrastructures, the
ability to share and compare analysis implementations, and
in general quicker breakthroughs and evolution in the area of
program analysis. This paper presents how we are separat-
ing analysis implementations from IRs with analysis-specific,
IR-independent interfaces. Analysis-specific IR interfaces
for alias/pointer analysis algorithms and reaching constants
illustrate that an IR interface designed for language depen-
dence is capable of providing enough information to support
the implementation of a broad range of analysis algorithms
and also represent constructs within many imperative pro-
gramming languages.

1. INTRODUCTION
The past decade has witnessed a proliferation of com-

piler infrastructures; however, no compiler infrastructure
has become universally adopted. The principal reason is
that different compiler projects have requirements that are
not addressed by a single infrastructure. For example, some
projects require access to the compiler infrastructure and
robust support for a particular language. In other cases, dif-
ferent research goals may be best supported with different
intermediate forms. For instance, an infrastructure for anal-
ysis and transformation of application binaries is not well
suited to support source-to-source transformation of high-
level languages, and vice versa.

For projects whose analysis and transformation require-

c©2005 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
PASTE September 5-6, 2005 Lisbon, Portugal
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ments are not met by an existing compiler infrastructure,
the challenges are daunting. Existing compiler infrastruc-
tures are monolithic in design—one cannot readily use a
single component of an infrastructure without adopting the
entire infrastructure. As a result, groups focusing on anal-
ysis and transformation algorithms typically build fragile
infrastructures for one or a few languages. Groups targeting
multiple languages often implement only the simplest analy-
ses and transformations. Since each compiler infrastructure
typically has a unique intermediate representation (IR) and
analysis and transformation are heavily integrated with the
IR, each compiler infrastructure requires duplication of ef-
fort to implement a specialized version of existing analysis
and transformation algorithms.

We are experimenting with an approach for decoupling
program analysis from the IR. In the OpenAnalysis toolkit,
we create analysis-specific interfaces between analysis algo-
rithms and IRs for imperative programming languages. This
approach separates the choice of program analysis imple-
mentation from the selection of a compiler infrastructure.
Analysis algorithms interact with IRs using a well-defined
set of interface methods, and infrastructure developers cre-
ate an interface to their infrastructure that implements the
methods for any subset of analysis algorithms.

Figure 1 provides an overview of the relationship between
components in the OpenAnalysis tookit, clients, and IRs.
The IR-specific implementation of analysis-specific interfaces
are in the grey box. Analyses within the toolkit use the IR-
specific implementations through an analysis-specific, IR-
independent interface by making queries on program con-
structs such as statements through opaque handles. Some
analyses share requirements, and thus the IR-specific im-
plementation of all IR interfaces is a single component to
enable implementation reuse. This is accomplished in C++
through the use of multiple inheritance and abstract base
classes.

The analysis-specific IR interfaces contain abstractions
that appear in most imperative programming languages.
Imperative (or procedural) programming languages support
the manipulation of state through the execution of a se-
quence of statements. In low-level representations such as
assembly, the state is stored in registers and memory. Higher-
level languages and their IRs store state in variables and
heap allocations. In general, the evaluation of expressions
generates values, which are stored into program state through
assignment statements. The sequence of statements can be
manipulated with control-flow constructs such as for loops
and if statements. Procedures accept references to program

state or values generated from expressions as parameters.
OpenAnalysis represents the following program control

constructs with opaque handles: procedure definitions, state-
ments, expressions, and labels. An example of a query in-
volving program control might be a request for an iterator
over all statements in a particular procedure. Some analyses
require iteration over statements in a hierarchical fashion,
for example to iterate over the statements in the true or
false branch of an if statement. For example, to generate a
control-flow graph, the CFG analysis manager creates basic
blocks that contain statement handles to the IR. Also, the
IR-specific interface implementation categorizes statement
handles as simple, multiway branches, gotos, and so forth.

The main objective of the OpenAnalysis toolkit is to sep-
arate analysis from the intermediate representation (IR) in
a way that eliminates analysis reimplementation for each
compiler infrastructure. We also aim to satisfy the follow-
ing subgoals:

1. The interface between an analysis algorithm and any
imperative programming language IR should be rela-
tively easy to implement.

2. The IR interface should support a significant range of
analysis implementations.

3. Simple procedures should exist for developing analysis
implementations and contributing them.

4. Using analysis results generated by analysis implemen-
tations within OpenAnalysis should be straightforward.

The ability to implement only the IR interface for an anal-
ysis of interest supports the first subgoal. The IR interfaces
clearly specify what information the source IR must provide
to OpenAnalysis to perform a specific analysis or set or re-
lated analyses. Another feature enabling quick startup is the
tendency of abstract interfaces for the various analyses to
share many concepts. This enables the efficient incremental
implementation of analysis-specific IR interface capabilities
for a particular IR. Overlap occurs because the analyses are
all applicable to imperative programming languages.

The software architecture supports the other subgoals and
the underlying theme that OpenAnalysis should be easy to
start using. Since analyses can also be clients, using ab-
stract interfaces for analysis results enables interaction be-
tween analysis results generated by the OpenAnalysis toolkit
and analysis results generated in an IR-specific fashion. Ab-
stract interfaces for analysis results also enable interchange-
able variants of an analysis. Thus, when analyses that pro-
vide more accuracy are developed, they can be plugged in
as the manager for that analysis type.

The OpenAnalysis toolkit is being used to analyze For-
tran 90 programs represented in Rice’s Open64/sl compiler,
C++ programs represented in Lawrence Livermore National
Laboratory’s ROSE compiler, and application binaries for a
wide variety of processor architectures including MIPS, Al-
pha, x86, Itanium, and Sparc. As such, OpenAnalysis is a
crucial component for the HPCToolkit project at Rice and
the automatic differentiation tools ADIC and OpenAD at
Argonne National Laboratory.

This paper focuses on the details of designing analysis-
specific IR interfaces and discusses how such interfaces can
express imperative programming language constructs for a
broad range of applicable analysis implementations. We

Analysis IR Interface

IR-Specific Interface

Implementation

Analysis Manager

Analysis Results Interface

Analysis Results

IR-Specific Analysis

Results

Client

Analysis IR Interface 2

Analysis Manager 2

Uses

Generates

Implements

Figure 1: Overview of OpenAnalysis Software Ar-
chitecture

present the analysis-specific IR interfaces for alias analysis
algorithms and the data-flow analysis reaching constants.1

Within the context of these two analyses we describe generic
IR interface abstractions such as memory reference expres-
sions, locations, expressions, and constants. We evaluate the
abstractions in terms of what imperative programming lan-
guage constructs they are capable of expressing. We also de-
scribe some of our experiences in developing analysis imple-
mentations using an IR-independent approach and present
issues that require future research.

2. IR INTERFACE FOR ALIAS ANALYSIS
In Imperative programming languages program state is

manipulated through memory references. Program state is
represented in OpenAnalysis with the location abstraction.
Registers, local variables, global variables, and heap alloca-
tions are examples of locations. The goal of alias analysis is
to determine which locations each memory reference may ac-
cess. Memory references may access the same location (i.e.,
may alias) as a result of (1) accessing subsets of the same
array, (2) constructs such as union in C and common blocks
and equivalence in Fortran, (3) pointers, and (4) reference
parameters. This section describes how the location and
memory reference expression abstractions are implemented
in OpenAnalysis and how they support generic alias analysis
of imperative programming languages.

2.1 Location Abstraction
Figure 2 shows the class hierarchy for the Location ab-

straction in OpenAnalysis. Named locations such as local
and global variables are represented with a NamedLoc and
have a SymbolHandle associated with them. Dynamically
allocated locations are represented with the UnnamedLoc sub-
class and associated with the statement that the allocation
occurs. Invisible locations refer to locations within a proce-
dure that are accessed by dereferencing nonlocal locations
or parameters to the procedure. Invisible locations are con-
ceptually the same as the invisible locations described in [7],
extended parameters in [19], and nonvisibles in [17].

For named locations, information about static aliasing
and the symbol scope is included within the NamedLoc data
structure. Static aliasing includes information about which

1When combined with transformation this analysis is com-
monly referred to as constant propagation.

Location

bool isaNamed()

bool isaUnnamed()

bool isaUnknown()

bool isaRefOp()

NamedLoc

SymHandle

UnnamedLoc

StmtHandle
UnknownLoc LocSubSet

full or partial

isaFieldSubSet()

isaIdxSubSet()

...

FieldSubSet

field name
...IdxSubSet

array index

InvisibleLoc

MemRefExpr

Figure 2: Location Class Hierarchy

MemRefExpr

adddressOf

full or partial accuracy

bool isaNamed()

bool isaUnnamed()

bool isaUnknown()

bool isaRefOp()

NamedRef

SymHandle

UnnamedRef

StmtHandle
UnknownRef RefOp

isaDeref()

isaSubSetRef()

Deref

number of derefs

IdxAccess

array index

FieldAccess

field name

...

SubSetRef

isaFieldAccess()

isaIdxAccess()

...

Figure 3: Memory Reference Expression Class Hi-
erarchy

other locations a symbol must or may overlap with because
of a language construct such as Fortran equivalence, com-
mon blocks, and C unions.

Aliasing due to accessing subsets of the same datastruc-
ture is expressed with location subsets. Location subsets are
implemented with the LocSubSet class, using the Decorator
pattern [8]. The concept of locations and location subsets
is similar to the concept of location blocks and location sets
introduced by Wilson in [19]. Our Location abstraction is,
however, more general than the one presented by Wilson
et al. The design of the Location class hierarchy enables
adding subclasses that express different location subset con-
cepts.

2.2 Memory References
As stated previously, locations (i.e. program state) are ac-

cessed through memory references. Table 1 shows example
statements in various imperative languages and the memory
references they contain. Memory references are associated
with an opaque handle called a MemRefHandle that uniquely
identifies a memory reference in the intermediate represen-
tation and in OpenAnalysis. One example of an appropriate
MemRefHandle is the address of the IR object that represents
the memory reference. The IR can cast the value in the han-
dle to the appropriate pointer type, and OpenAnalysis sees

unique values amongst all handles.
The memory reference expression (implemented with the

class hierarchy shown in Figure 3) provides an avenue for a
specific IR to express generic information about a memory
reference. The third column in Table 1 specifies the mem-
ory reference expression objects that would appropriately
describe the memory references in the second column. For
example, the memory reference q in the Fortran 90 state-
ment “... = q” is described as one dereference to a named
reference to q. Notice that this description is similar to the
description for the memory reference *p in the C statement
“... = *p”. This is due to the fact that even though the
syntax and probably the IR for Fortran 90 and C are differ-
ent, the semantics are similar and can be described as such
to OpenAnalysis. As a final note, the Sparc code performs
the same computation as the C and Fortran 90 statements;
however, the IR is unable to provide any pointer assignment
pairs or address computation descriptions since Sparc is not
typed.

2.3 Alias Analysis
In OpenAnalysis, alias analysis managers are responsible

for providing alias analysis results that indicate which lo-
cations a memory reference may or must access. The alias
results must also indicate whether any pair of memory ref-
erences may or must alias each other. Aliasing between two
memory references is indicated if they both may or must ref-
erence the same location or locations that may or must over-
lap. When aliasing is due to accessing subsets of the same
array, the fact that a partial LocSubSet of an array may
overlap with the array itself or another subset is detected.
For overlapping due to C unions or the Fortran equivalence
keyword, the NamedLoc datastructure maintains a set of sym-
bols that may or must overlap with it. For pointers, the alias
analysis must maintain a static estimate of the dynamic rela-
tionships between memory references involving dereferences
and locations. Aliasing due to reference parameters requires
analysis of the memory references passed to all calls of a pro-
cedure.

While developing the alias IR interface, we surveyed the
information used by a number of alias analysis algorithms
that provide a broad spectrum of the tradeoff between accu-
racy and efficiency [13, 4, 7, 19, 2, 18, 17, 3, 15]. Based on
the needs of these analyses, the analysis-specific IR interface
for alias analysis includes an iterator over all the statements
in a procedure, an iterator over all of the memory references
in a statement, the set of memory reference expressions that
describe a given memory reference handle, the location ab-
straction associated with a particular symbol, an iterator
over the pointer assignments that occur in the statement,
and iterators over procedures, procedure calls, and proce-
dure call parameters. Table 1 shows the information that
the IR must provide to the alias analysis and the results
of an alias analysis manager in terms of which locations
each memory reference may access. Note that the &x and a
memory references do not actually map to locations. These
memory references are actually address computations.

An alias analysis that does not handle dereferences can
map all of the memory reference expressions that are named
to the corresponding named locations and map all memory
reference expressions that are dereferences to the unknown
location or alternatively all accessible locations. A more ad-
vanced alias analysis can use the pointer assignment pairs to

Provided by IR Alias Results
Statement Memory

References
Memory Reference Expressions Ptr Assign

Pairs
May Locations

C
int x, *p;
p = &x; p NamedRef(p, DEF) < p, & x > NamedLoc(p)

&x NamedRef(x, USE, address of) address computed
... = *p; p NamedRef(p, USE) NamedLoc(p)

*p Deref(1, NamedRef(p, USE), USE) NamedLoc(x)
Fortran 90

integer a
integer, pointer :: q
q => a q NamedRef(q, DEF) < q, a > NamedLoc(q)

a NamedRef(a,USE, address of) address computed
... = q q Deref(1, NamedRef(q, USE), USE) NamedLoc(a)

Sparc Assembly
sub %fp, 4, %l1 %fp NamedRef(%fp, USE)

%l1 NamedRef(%l1, DEF)
st %l1, %l2 %l1 NamedRef(%l1, USE)

%l2 NamedRef(%l2, DEF)
ld [%l2], %l3 %l2 NamedRef(%l2, USE)

[%l2] Deref(1,NamedRef(%l2, USE), USE)
%l3 NamedRef(%l3, DEF)

Table 1: Examples in C, Fortran 90, and Sparc Assembly with the memory references for each statement.

more accurately analyze what locations a dereference might
access. In the C example in Table 1, a more accurate alias
analysis can determine that *p references location x. In the
Fortran 90 example, a more accurate alias analysis can de-
termine that q references location a.

Some alias analysis algorithms also use information about
whether a symbol is local to the current procedure. The
important scoping distinction is whether a symbol is acces-
sible by name only within the current procedure or whether
it is also accessible outside the current procedure. Often if
a variable is local to a procedure, then it is accessible only
within the current procedure. One exception is languages
that allow embedded procedures. In implementing IR inter-
faces for such a language, local variables in the source IR can
be classified as local to OpenAnalysis algorithms only if that
local variable does not appear in any embedded procedures.

The final proof that this relatively thin interface is suffi-
cient for the cited analysis algorithms would be an imple-
mentation of each of these algorithms within OpenAnalysis.
Currently the only alias analysis algorithm detects aliasing
due to reference parameters but has all memory references
involving a dereference map to the Unknown location as a
conservative estimate. Future work includes validating this
interface with more alias analysis implementations and de-
veloping a type abstraction for OpenAnalysis to enable type-
based alias analysis algorithms. The proof that analysis-
specific IR interfaces work for any imperative programming
language is stronger in that IR interface implementations
exist for a number of compiler infrastructures.

2.4 Handling Difficult Language Constructs
A common approach to handling complicated memory ref-

erences is to canonicalize the program into a simplified form
or translate the IR into a simplified form [7]. Such transla-
tions make it difficult or impossible to map analysis results

ID PL Statement Memory References
1 C x = *(p+q); x, p, q, *(p+q)
2 C d->c->b = 5; d, d->c, d->c->b
3 C p = &a; p, &a
4 F90 A = B + C A, B, C (arrays)
5 Sparc ld [%l0],%o0 %l0, [%l0], %o0
6 C *(r<*q?r:*q) =0; r, q, *q,

*(r<*q?r:*q)

Table 2: Example memory references.

back to the original program. Our approach involves each
memory reference in the original IR being uniquely associ-
ated with an opaque handle, thus solving the problem of
mapping analysis results back to the original IR. We argue
that the memory reference expression (MRE) abstraction is
capable of conservatively representing challenging language
features such as pointer arithmetic, array operations, and
function pointers.

The key idea is to associate each sub-memory reference
within a statement with an opaque memory reference han-
dle to avoid breaking the references into their component
parts. Examples 1, 2, 5, and 6 in Table 2 show how complex
memory references can be viewed as multiple sub-memory
references. The semantics of the original IR then provides
direction for generating MREs. For example, statement 1
in Table 2 involves pointer arithmetic. Assume that p is a
pointer; then the MRE for *(p+q) should differ based on
whether q is an integer or another pointer. If q is another
pointer, then the expression is invalid according to the C99
standard; and if the compiler doesn’t flag that as an error
upon parsing, then the IR interface implementation can rep-
resent the reference with an UnknownRef. If q is an integer,

then the *(p+q) reference can be represented as a derefer-
ence to p with partial accuracy if the assumption is made
that adding q will not cause overstepping array bounds, or
as an UnknownRef to be on the safe side. Array operations in
Fortran90 such as those in statement 4 can be represented as
a fully accurate NamedRef to each array (references to array
elements can be conservatively represented as partially ac-
curate named references to an array). Statement 6 involves
a ternary operator and can be represented with two mem-
ory reference expressions: a single dereference to the named
reference r and a double dereference to the named reference
q.

Since many alias analysis algorithms do not use the con-
cept of type, the current memory reference expression ab-
stractions can represent a wide range of memory references
including, references to entire arrays, references to fields
within a structure, and assignments and calls to function
pointers. Function pointer assignments such as foo = bar
can be represented as foo = &bar. Then calls to a function
pointer such as foo() can be represented as a dereference
to the named reference foo.

Another advantage of generating a view of the original IR
for program analysis, instead of a canonicalized or simpli-
fied IR, is that the view can be a conservative estimate of
the behavior. The abstractions passed through the various
analysis-specific IR interfaces need not be detailed enough
for code generation. In the context of alias analysis, this
approach enables expressing memory references at more or
less accuracy to analysis implementations to encourage quick
initial IR interface development while enabling future refine-
ments. For example, the main memory reference for state-
ment 2 in Table 2 can be accurately represented as a field
reference to b that is part of a dereference to a field refer-
ence to c that is part of a dereference to d, or the memory
reference can be represented with partial accuracy as two
dereferences to d.

3. IR INTERFACE FOR REACHING CON-
STANTS

Reaching constants is a data-flow analysis that determines
which memory references have a constant value at compile
time. Since data-flow analysis involves facts about the data
in the program state, data-flow information is associated
with the location abstraction in OpenAnalysis. For reach-
ing constants, the data-flow information consists of tuples
that map a location to a constant. A memory reference is
constant if all the locations that it may reference are as-
signed the same constant value. The analysis-specific IR
interface for reaching constants is interesting because it il-
lustrates the abstract use of constants and operators as well
as being an example of a data-flow analysis algorithm.

OpenAnalysis can perform reaching constants using opaque
handles to operands, memory references, statements, and
constants and abstractions for expressions, constants, and
memory reference expressions. Specifically, the constant
value abstraction requires the implementation of an equal-
ity operator only. The IR interface for reaching constants
also requires that the IR can generate a new opaque con-
stant given an opaque handle to an operator and one or
two opaque constants as operands. The key point is that
OpenAnalysis does not need to know the datatype for the
constants or the semantics of the operator. More generally,

various analyses will need only a limited interface associated
with a constant value abstraction.

For expressions there is an expression tree abstraction.
Other analyses that require an expression tree abstraction
include array data dependence analysis and symbolic analy-
sis. Expression trees contain a generic expression node type
that is then subclassed to wrap handles that can occur in
an expression. Example expression nodes include a call node
that contains an expression handle that represents a func-
tion call, an operator node that contains an operator handle
and pointers to children within the expression tree, and a
memory reference node that contains a memory reference
handle.

As a data-flow analysis, reaching constants is implemented
by using a data-flow analysis framework that is part of Open-
Analysis. Therefore, it is necessary to implement only ini-
tialization, transfer, and meet functions. For data-flow anal-
ysis algorithms in general, design decisions with respect to
the analysis-specific IR interface will affect to what extent
the analysis implementation is IR independent. For exam-
ple, if the transfer function is specified as part of the IR
interface, then a significant piece of the analysis must be
done in an IR-specific fashion. Our reaching constants IR
interface includes methods that (1) indicate whether a state-
ment involves the assignment of an expression to a memory
references, (2) provide an iterator over all such assignments
in the statement, (3) provide the expression abstraction for
any expression, (4) provide an opaque constant value given
the handle to a constant symbol or value, (5) evaluate an
opaque operator handle given two opaque constant values,
and (6) return iterators needed for other statements such
as all the memory references that indicate uses or defines
within a statement.

4. TOOLKIT STATUS
The OpenAnalysis project was initially begun to jump-

start two emerging compiler activities at Rice University.
Both activities needed control-flow graph (CFG) analysis
capabilities but were based on intermediate representations
with very different levels of abstraction. The first activity
involved a tool for recovering information about loop nest-
ing structure from application binaries. The second involved
the Open64/sl infrastructure for source-to-source program
analysis and transformation [1], which uses an abstract syn-
tax tree-level intermediate form. Three existing compiler
projects at Rice had relevant technologies to contribute: a
MATLAB compiler effort had code for building CFGs from
structured control flow, the scalar compiler group had devel-
oped a sophisticated strategy for constructing a control-flow
graph for scheduled assembly code that permits branches in
branch instruction delay slots [5], and the DSystem compiler
infrastructure [16] had a sophisticated implementation of an
interval analysis algorithm for identifying flowgraph cycles
and nesting of both reducible and irreducible loops [9].

However, none of the code could be reused directly in the
new tools. The principal obstacle was that each depended
intimately on the details of the particular intermediate rep-
resentation for which it was developed. The key step for
leveraging and integrating these components was to design
an interface through which the analysis algorithms could ob-
tain necessary information from the intermediate represen-
tation, yet be insulated from the details of any particular IR
by a layer of abstraction.

Using this approach, Rice researchers created a broadly
applicable control-flow graph construction and analysis pack-
age. Today, this package is being employed to construct
control flow graphs for two abstract syntax tree-level repre-
sentations: Rice’s Open64/sl infrastructure for Fortran 90
and Lawrence Livermore National Laboratory’s ROSE com-
piler infrastructure for C++. The OpenAnalysis flowgraph
package also is the cornerstone of bloop—an open-source,
multiplatform binary analyzer that is part of Rice Univer-
sity’s HPCToolkit performance analysis tools [11]. Using
OpenAnalysis’s representation-independent flowgraph anal-
ysis infrastructure, bloop can recover loop nesting structure
for application binaries for a wide variety of processor archi-
tectures including MIPS, Alpha, x86, Itanium, and SPARC.
The OpenAnalysis flowgraph package is also used in Ar-
gonne’s automatic differentiation tools ADIC and OpenAD.

Upon being adopted by researchers at Argonne, Open-
Analysis underwent a facelift. The control flow graph func-
tionality and some simplified call graph functionality were
converted over to the more modular software architecture
overviewed in Figure 1. We have also implemented proto-
type analysis managers for intraprocedural reaching defini-
tions, ud and du-chains, reaching constants, interprocedu-
ral alias analysis, side-effect analysis, and a domain-specfic
analysis needed for automatic differentiation called activity
analysis. We also have begun prototyping data-flow analy-
sis frameworks for analysis over a control-flow graph, ICFG,
and call graph.

5. LIMITATIONS AND ISSUES
The current instantiation of OpenAnalysis requires the

whole program to do correct analysis, does not handle func-
tion pointers while constructing the call graph, uses ineffi-
cient algorithms to manipulate the location abstraction, and
interacts only with compiler infrastructures written in C++.
We plan to address these issues in future work. Even with
these limitations OpenAnalysis is being actively used within
a number of research projects.

While developing the IR interface implementation for
Open64/sl, we observed that IR interface implementations
can result in the creation of a subsidiary IR to support the
necessary queries. For example, in Open64’s Whirl IR many
of the opaque handles are valid only within the context of a
procedure; therefore, the IR interface implementation must
iterate over all the constructs within the IR and maintain a
mapping of handles to procedure context. We also observed
that adding new analysis-specific IR interface functionality
sometimes leads to a redesign of the ad hoc subsidiary IR.
If each analysis requires the construction of a subsidiary
IR, but there is some overlap, the IR interface implementa-
tions themselves could become quite tangled. More work is
needed to develop effective approaches to implementing IR
interfaces in an incremental fashion.

Language independence can also be a limitation. Many
alias analysis implementations take advantage of language-
specific assumptions to improve the accuracy of alias anal-
ysis. For example, in Fortran 90 the possible targets of a
pointer must be specified. In Fortran 77 and Fortran 90,
if reference parameters are passed the same location, then
assignment is not allowed. The alias IR interface within
OpenAnalysis does not provide a way to communicate such
information with the alias analysis implementation. One
open question is how these assumptions can be codified sep-

arately from alias analysis implementations but still be used
to improve accuracy. In existing alias analysis implementa-
tions these assumptions are strongly coupled with the IR or
spread throughout the analysis implementation.

6. RELATED WORK
In [14], Moonen presents a software architecture that pro-

vides language-independent data-flow analysis. The goal
of language independence is the same as in our current
work. Moonen’s approach is different in that he converts
program representations to a data-flow representation lan-
guage. Although he handles the problem of mapping the re-
sults back to the original representation in situations where
the ASF+SDF tool [12] is used, this will still be an issue
in the general case. Also, in order to convert a program
representation to his data-flow representation language, it
is necessary to perform alias analysis. We enable language-
independent alias analysis as well.

GENOA [6] and StarTool [10] are two program analysis
tools that have developed an adaptation level between in-
termediate representations and analysis. Both tools require
that the specific intermediate representation be an instan-
tiation of an abstract syntax tree, whereas the OpenAnal-
ysis toolkit is already able to handle a wider range of pro-
gram representations including executables. The GENOA
tool works with an AST-based interface that attempts to
make information available for all possible analyses result-
ing in a monolithic interface between the intermediate rep-
resentation and analysis implementations. In the StarTool,
Hayes et al. took a more client-driven approach; the adap-
tation level was smaller and simpler because it focused on
the needs of the StarTool analysis. We are taking a sim-
ilar approach in the OpenAnalysis toolkit by developing a
separate IR interface for each analysis.

7. CONCLUSIONS
An IR-independent analysis toolkit enables higher pro-

ductivity of compiler researchers in several ways: (1) en-
abling the use of common analyses in a plug-and-play fash-
ion with the compiler infrastructure most appropriate to re-
searchers’ goals, (2) providing analyses at all representation
levels within a particular compiler infrastructure, (3) pro-
viding analysis frameworks, (4) encouraging toolkit exten-
sion and enabling compiler researchers to share their anal-
yses with others, and (5) providing analysis implementa-
tions that realize different accuracy versus efficiency trade-
offs. OpenAnalysis provides all of these benefits without re-
quiring commitment to a particular compiler infrastructure.
Thus, compiler researchers can focus on such issues as ease
of use, robustness, and language coverage while selecting the
appropriate compiler infrastructure for their projects.

Analysis-specific, IR-independent interfaces are the key
to providing language-independent program analysis. It is
possible to conservatively represent complex language con-
structs starting from basic imperative programming con-
structs that lie at the intersection of all such languages. A
broad range of analysis implementations of difficult analy-
ses such as alias analysis is possible through analysis-specific
interfaces that use a subset of imperative language con-
struct abstractions. Our experience with the OpenAnaly-
sis toolkit indicates that sharing analysis implementations
between compiler infrastructures is possible and a promis-

ing approach for eliminating the need to duplicate analysis
implementation work.

8. ACKNOWLEDGMENTS
This work was supported in part by the Mathematical,

Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

9. REFERENCES
[1] Open64/sl web page, 2003.

http://www.hipersoft.rice.edu/open64/.
[2] M. Burke, P. Carini, J.-D. Choi, and M. Hind.

Flow-insensitive interprocedural alias analysis in the
pressence of pointers. In D. Gelertner, A. Nicolau, and
D. Padua, editors, Lecture Notes in Computer
Science, 892. Springer-Verlag, 1995.

[3] B.-C. Cheng and W.-M. W. Hwu. Modular
interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In
Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation,
pages 57–69. ACM Press, 2000.

[4] J.-D. Choi, M. Burke, and P. Carini. Efficient
flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceedings
of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1993.

[5] K. Cooper, T. Harvey, and T. Waterman. Building a
control-flow graph from scheduled assembly code.
Technical report, Rice University TR02-399, 2002.

[6] P. T. Devanbu. GENOA: A customizable language-
and front-end independent code analyzer. In
International Conference on Software Engineering,
pages 307–317, 1992.

[7] M. Emami, R. Ghiya, and L. J. Hendren.
Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1994.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley Professional
Computing Series. Addison Wesley, 1995.

[9] P. Havlak. Nesting of reducible and irreducible loops.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(19):557–567, 1997.

[10] J. Hayes, W. G. Griswold, and S. Moskovics.
Component design of retargetable program analysis
tools that reuse intermediate representations. In the
2000 International Conference on Software
Engineering, (ICSE 2000), June 2000.

[11] HiPerSoft: A Center for High Performance Software
Research @ Rice. HPCToolkit web page, 2000-2004.
http://www.hipersoft.rice.edu/hpctoolkit/.

[12] P. Klint. A meta-environment for generating
programming environments. ACM Transactions on
Software Engineering and Methodology, 2(2):176–201,
1993.

[13] W. Landi and B. G. Ryder. Pointer-induced aliasing:
A problem classification. In POPL ’91: Proceedings of

the 18th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 93–103,
New York, NY, USA, 1991. ACM Press.

[14] L. Moonen. A generic architecture for data flow
analysis to support reverse engineering. In the 2nd
International Workshop on the theory and Practice of
Algebraic Specifications (ASF+SDF’97), 1997.

[15] E. M. Nystrom, H. S. Kim, and W. M. Hwu.
Bottom-up and top-down context-sensitive
summary-based pointer analysis. In Proceedings of the
11th Static Analysis Symposium, August 2004.

[16] Rice University Parallel Compiler and Tools Group.
The DSystem compiler infrastructure.
http://www.cs.rice.edu/ dsystem.

[17] B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang,
and R. Altucher. A schema for interprocedural
modification side-effect analysis with pointer aliasing.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(2):105–186, 2001.

[18] B. Steensgaard. Points-to analysis in almost linear
time. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 32–41. ACM Press, 1996.

[19] R. P. Wilson and M. S. Lam. Efficient
context-sensitive pointer analysis for C programs. In
Proceedings of the ACM SIGPLAN Conference on
Programming language Design and Implementation,
pages 1–12. ACM Press, 1995.

